Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1574149.v1

ABSTRACT

We carried out a prospective and retrospective case series study to compare physical outcome performance with an in-person evaluation of 248 COVID-related ARDS (CARDS) patients and 48 classic ARDS patients. At 6 months, patients with classic ARDS compared to CARDS had lower MRCss, handgrip dynamometry, and 6 Minutes Walk Test. Fatigue was more frequently reported by patients with classic ARDS. At 12 months, patients in both groups partially regained physical performances, and the differences in measured variables between classic ARDS and CARDS remained constant over time. Reasons for these differences are likely multifactorial and require further investigations.


Subject(s)
COVID-19
2.
Frauke Degenhardt; David Ellinghaus; Simonas Juzenas; Jon Lerga-Jaso; Mareike Wendorff; Douglas Maya-Miles; Florian Uellendahl-Werth; Hesham ElAbd; Malte C. Ruehlemann; Jatin Arora; Onur oezer; Ole Bernt Lenning; Ronny Myhre; May Sissel Vadla; Eike Matthias Wacker; Lars Wienbrandt; Aaron Blandino Ortiz; Adolfo de Salazar; Adolfo Garrido Chercoles; Adriana Palom; Agustin Ruiz; Alberto Mantovani; Alberto Zanella; Aleksander Rygh Holten; Alena Mayer; Alessandra Bandera; Alessandro Cherubini; Alessandro Protti; Alessio Aghemo; Alessio Gerussi; Alexander Popov; Alfredo Ramirez; Alice Braun; Almut Nebel; Ana Barreira; Ana Lleo; Ana Teles; Anders Benjamin Kildal; Andrea Biondi; Andrea Ganna; Andrea Gori; Andreas Glueck; Andreas Lind; Anke Hinney; Anna Carreras Nolla; Anna Ludovica Fracanzani; Annalisa Cavallero; Anne Ma Dyrhol-Riise; Antonella Ruello; Antonio Julia; Antonio Muscatello; Antonio Pesenti; Antonio Voza; Ariadna Rando-Segura; Aurora Solier; Beatriz Cortes; Beatriz Mateos; Beatriz Nafria-Jimenez; Benedikt Schaefer; Bjoern Jensen; Carla Bellinghausen; Carlo Maj; Carlos Ferrando; Carmen de la Horrra; Carmen Quereda; Carsten Skurk; Charlotte Thibeault; Chiara Scollo; Christian Herr; Christoph D. Spinner; Christoph Lange; Cinzia Hu; Clara Lehmann; Claudio Cappadona; Clinton Azuure; - COVICAT study group; - Covid-19 Aachen Study (COVAS); Cristiana Bianco; Cristina Sancho; Dag Arne Lihaug Hoff; Daniela Galimberti; Daniele Prati; David Haschka; David Jimenez; David Pestana; David Toapanta; Elena Azzolini; Elio Scarpini; Elisa T. Helbig; Eloisa Urrechaga; Elvezia Maria Paraboschi; Emanuele Pontali; Enric Reverter; Enrique J. Calderon; Enrique Navas; Erik Solligard; Ernesto Contro; Eunate Arana; Federico Garcia; Felix Garcia Sanchez; Ferruccio Ceriotti; Filippo Martinelli-Boneschi; Flora Peyvandi; Florian Kurth; Francesco Blasi; Francesco Malvestiti; Francisco J. Medrano; Francisco Mesonero; Francisco Rodriguez-Frias; Frank Hanses; Fredrik Mueller; Giacomo Bellani; Giacomo Grasselli; Gianni Pezzoli; Giorgio Costantino; Giovanni Albano; Giuseppe Bellelli; Giuseppe Citerio; Giuseppe Foti; Giuseppe Lamorte; Holger Neb; Ilaria My; Ingo Kurth; Isabel Hernandez; Isabell Pink; Itziar de Rojas; Ivan Galvan-Femenia; Jan C. Holter; Jan Egil Egil Afset; Jan Heyckendorf; Jan Damas; Jan Kristian Rybniker; Janine Altmueller; Javier Ampuero; Jesus M. Banales; Joan Ramon Badia; Joaquin Dopazo; Jochen Schneider; Jonas Bergan; Jordi Barretina; Joern Walter; Jose Hernandez Quero; Josune Goikoetxea; Juan Delgado; Juan M. Guerrero; Julia Fazaal; Julia Kraft; Julia Schroeder; Kari Risnes; Karina Banasik; Karl Erik Mueller; Karoline I. Gaede; Koldo Garcia-Etxebarria; Kristian Tonby; Lars Heggelund; Laura Izquierdo-Sanchez; Laura Rachele Bettini; Lauro Sumoy; Leif Erik Sander; Lena J. Lippert; Leonardo Terranova; Lindokuhle Nkambule; Lisa Knopp; Lise Tuset Gustad; Lucia Garbarino; Luigi Santoro; Luis Tellez; Luisa Roade; Mahnoosh Ostadreza; Maider Intxausti; Manolis Kogevinas; Mar Riveiro-Barciela; Marc M. Berger; Mari E.K. Niemi; Maria A. Gutierrez-Stampa; Maria Grazia Valsecchi; Maria Hernandez-Tejero; Maria J.G.T. Vehreschild; Maria Manunta; Mariella D'Angio; Marina Cazzaniga; Marit M. Grimsrud; Markus Cornberg; Markus M. Noethen; Marta Marquie; Massimo Castoldi; Mattia Cordioli; Maurizio Cecconi; Mauro D'Amato; Max Augustin; Melissa Tomasi; Merce Boada; Michael Dreher; Michael J. Seilmaier; Michael Joannidis; Michael Wittig; Michela Mazzocco; Miguel Rodriguez-Gandia; Natale Imaz Ayo; Natalia Blay; Natalia Chueca; Nicola Montano; Nicole Ludwig; Nikolaus Marx; Nilda Martinez; - Norwegian SARS-CoV-2 Study group; Oliver A. Cornely; Oliver Witzke; Orazio Palmieri; - Pa COVID-19 Study Group; Paola Faverio; Paolo Bonfanti; Paolo Tentorio; Pedro Castro; Pedro M. Rodrigues; Pedro Pablo Espana; Per Hoffmann; Philip Rosenstiel; Philipp Schommers; Phillip Suwalski; Raul de Pablo; Ricard Ferrer; Robert Bals; Roberta Gualtierotti; Rocio Gallego-Duran; Rosa Nieto; Rossana Carpani; Ruben Morilla; Salvatore Badalamenti; Sammra Haider; Sandra Ciesek; Sandra May; Sara Bombace; Sara Marsal; Sara Pigazzini; Sebastian Klein; Selina Rolker; Serena Pelusi; Sibylle Wilfling; Silvano Bosari; Soren Brunak; Soumya Raychaudhuri; Stefan Schreiber; Stefanie Heilmann-Heimbach; Stefano Aliberti; Stephan Ripke; Susanne Dudman; - The Humanitas COVID-19 Task Forse; - The Humanitas Gavazzeni COVID-19 Task Force; Thomas Bahmer; Thomas Eggermann; Thomas Illig; Thorsten Brenner; Torsten Feldt; Trine Folseraas; Trinidad Gonzalez Cejudo; Ulf Landmesser; Ulrike Protzer; Ute Hehr; Valeria Rimoldi; Vegard Skogen; Verena Keitel; Verena Kopfnagel; Vicente Friaza; Victor Andrade; Victor Moreno; Wolfgang Poller; Xavier Farre; Xiaomin Wang; Yascha Khodamoradi; Zehra Karadeniz; Anna Latiano; Siegfried Goerg; Petra Bacher; Philipp Koehler; Florian Tran; Heinz Zoller; Eva C. Schulte; Bettina Heidecker; Kerstin U. Ludwig; Javier Fernandez; Manuel Romero-Gomez; Agustin Albillos; Pietro Invernizzi; Maria Buti; Stefano Duga; Luis Bujanda; Johannes R. Hov; Tobias L. Lenz; Rosanna Asselta; Rafael de Cid; Luca Valenti; Tom H. Karlsen; Mario Caceres; Andre Franke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.21.21260624

ABSTRACT

Due to the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), deepening the host genetic contribution to severe COVID-19 may further improve our understanding about underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany, as well as hypothesis-driven targeted analysis of the human leukocyte antigen (HLA) region and chromosome Y haplotypes. We include detailed stratified analyses based on age, sex and disease severity. In addition to already established risk loci, our data identify and replicate two genome-wide significant loci at 17q21.31 and 19q13.33 associated with severe COVID-19 with respiratory failure. These associations implicate a highly pleiotropic ~0.9-Mb 17q21.31 inversion polymorphism, which affects lung function and immune and blood cell counts, and the NAPSA gene, involved in lung surfactant protein production, in COVID-19 pathogenesis.


Subject(s)
COVID-19 , Respiratory Insufficiency
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.29.21254151

ABSTRACT

Background and objective. Long-term pulmonary sequelae following SARS-CoV-2 pneumonia are not yet confirmed, however preliminary observations suggests a possible relevant clinical, functional and radiological impairment. The aim of this study was to identify and characterise pulmonary sequelae caused by SARS-CoV-2 pneumonia at 6-month follow-up. Methods. In this multicenter, prospective, observational cohort study, patients hospitalised for SARS-CoV-2 pneumonia and without prior diagnosis of structural lung diseases were stratified by maximum ventilatory support (oxygen only, continuous positive airway pressure (CPAP) and invasive mechanical ventilation (IMV)) and followed up at 6 months from discharge. Pulmonary function tests and diffusion capacity for carbon monoxide (DLCO), 6 minutes walking test, chest X-ray, physical exam and modified Medical Research Council (mMRC) dyspnoea score were collected. Results. Between March and June 2020, 312 patients were enrolled (83, 27% women; median [IQR] age 61.1 [53.4,69.3] years). The parameters that showed the highest rate of impairment were DLCO and chest-X-ray, in 46% and 25% of patients, respectively. However, only a minority of patients reported dyspnoea (31%), defined as mMRC [≥] 1, or showed a restrictive ventilatory defects (9%). In the logistic regression model, having asthma as comorbidity was associated with DLCO impairment at follow-up, while prophylactic heparin administration during hospitalisation appeared as a protective factor. Need for invasive ventilatory support during hospitalisation was associated with chest imaging abnormalities. Conclusion. DLCO and radiological assessment appear to be the most sensitive tools to monitor patients with COVID-19 during follow-up. Future studies with longer follow-up are warranted to better understand pulmonary sequelae.


Subject(s)
Pulmonary Embolism , Lung Diseases , Dyspnea , Chest Pain , Severe Acute Respiratory Syndrome , Asthma , COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-358612.v1

ABSTRACT

Background: Long-term pulmonary sequelae following SARS-CoV-2 pneumonia are not yet confirmed, however preliminary observations suggests a possible relevant clinical, functional and radiological impairment. The aim of this study was to identify and characterise pulmonary sequelae caused by SARS-CoV-2 pneumonia at 6-month follow-up. Methods: . In this multicenter, prospective, observational cohort study, patients hospitalised for SARS-CoV-2 pneumonia and without prior diagnosis of structural lung diseases were stratified by maximum ventilatory support (“oxygen only”, “continuous positive airway pressure (CPAP)” and “invasive mechanical ventilation (IMV)”) and followed up at 6 months from discharge. Pulmonary function tests and diffusion capacity for carbon monoxide (DLCO), 6 minutes walking test, chest X-ray, physical exam and modified Medical Research Council (mMRC) dyspnoea score were collected. Results: . Between March and June 2020, 312 patients were enrolled (83, 27% women; median [IQR] age 61.1 [53.4,69.3] years). The parameters that showed the highest rate of impairment were DLCO and chest-X-ray, in 46% and 25% of patients, respectively. However, only a minority of patients reported dyspnoea (31%), defined as mMRC ≥ 1, or showed a restrictive ventilatory defects (9%). In the logistic regression model, having asthma as comorbidity was associated with DLCO impairment at follow-up, while prophylactic heparin administration during hospitalisation appeared as a protective factor. Need for invasive ventilatory support during hospitalisation was associated with chest imaging abnormalities. Conclusions: . DLCO and radiological assessment appear to be the most sensitive tools to monitor patients with COVID-19 during follow-up. Future studies with longer follow-up are warranted to better understand pulmonary sequelae. ClinicalTrials.gov Identifier: NCT04435327


Subject(s)
COVID-19 , Pneumonia , Lung Diseases
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-92708.v2

ABSTRACT

Background: Respiratory failure due to COVID-19 pneumonia is associated with high mortality and may overwhelm health care systems, due to the surge patients requiring advanced respiratory support. Shortage of intensive care unit (ICU) beds required many patients to be treated outside the ICU despite severe gas exchange impairment. Helmet is as effective interface to provide Continuous Positive Airway Pressure (CPAP) non-invasively. We report data about the usefulness of helmet CPAP during pandemic, either as an effective treatment, a bridge to intubation or a rescue therapy for patients with care limitations (DNI). Methods: In this observational study we collected data regarding patients failing standard oxygen therapy (i.e. non-rebreathing mask) due to COVID-19 pneumonia treated with a free flow helmet CPAP system. Patients’ data were recorded before, at initiation of CPAP treatment and once a day, thereafter. CPAP failure was defined as a composite outcome of intubation or death. Results: A total of 306 patients were included; 42% were deemed as DNI. Helmet CPAP treatment was successful in 69% of the full-treatment and 28% of the DNI patients ( P< 0.001). With helmet CPAP, PaO 2 /FiO 2 ratio doubled from about 100 to 200 mmHg ( P< 0.001); respiratory rate decreased from 28 [22-32] to 24 [20-29] breaths per minute, P <0.001). C-Reactive Protein, time to oxygen mask failure, age, PaO 2 /FiO 2 during CPAP, number of comorbidities were independently associated with CPAP failure. Helmet CPAP was maintained for 6 [3-9] days, almost continuously during the first two days. None of the full treatment patients died before intubation in the wards. Conclusions: : Helmet CPAP treatment is feasible for several days outside the ICU, despite persistent impairment in gas exchange. It was used, without escalating to intubation, in the majority of full treatment patients after standard oxygen therapy failed. DNI patients could benefit from helmet CPAP as rescue therapy to improve survival. Trial Registration: NCT04424992


Subject(s)
Hypoxia, Brain , COVID-19 , Respiratory Insufficiency
6.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2010.08582v2

ABSTRACT

The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network. The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation. Performance of the proposed lung segmentation algorithm was extensively evaluated on CT scans of subjects with COPD, confirmed COVID-19, lung cancer, and IPF, despite no labeled training data of the latter three diseases. Lobar segmentations were obtained using the left and right lung segmentation as input to the LobeNet algorithm. Regional lobar analysis was performed using hierarchical clustering to identify radiographic subtypes of COVID-19. The proposed lung segmentation algorithm was quantitatively evaluated using semi-automated and manually-corrected segmentations in 87 COVID-19 CT images, achieving an average symmetric surface distance of $0.495 \pm 0.309$ mm and Dice coefficient of $0.985 \pm 0.011$. Hierarchical clustering identified four radiographical phenotypes of COVID-19 based on lobar fractions of consolidated and poorly aerated tissue. Lower left and lower right lobes were consistently more afflicted with poor aeration and consolidation. However, the most severe cases demonstrated involvement of all lobes. The polymorphic training approach was able to accurately segment COVID-19 cases with diffuse consolidation without requiring COVID-19 cases for training.


Subject(s)
Lung Diseases , Pulmonary Disease, Chronic Obstructive , Lung Neoplasms , Acute Lung Injury , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL